
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2016

High-Precision Anchored
Accumulators for Reproducible
Floating-Point Summation

David Lutz and Neil Burgess

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

2

Kulisch accumulators

▪ treat FP numbers and products as very wide fixed-point numbers
▪ use a 4288-bit accumulator!
▪ 4092 possible locations for first significand bit
▪ 105 fraction bits
▪ extra bits so as to avoid overflow
▪ 67 64-bit words

▪ these additions are associative, and the 4288-bit result is exact

2+2139 2-214820

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

3

Reducing exponent range
▪ most problems do not require the full exponent range
▪ galaxies or subatomics?

▪ many programmers use FP for convenience
▪ small values may well be unimportant
▪ programmers can know & benefit from knowing these ranges

2+2139 2-214820

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

4

What is a typical range?

▪ 100 bits suffices for many HPC applications” (D. Bailey, 2013 ARITH keynote)
▪ “most problems fit in the range 10-25 to 1030, a span of about 183 bits” (LANL)
▪ “128-bit integers are probably sufficient for most uses.” (LANL again, SC15)
▪ “... in most cases we're around the 10-15 tolerance [2-50] because of machine

epilson, compiler rounding/optimization etc with results in a tighter range with
lower exponents. (Sandia)

2+2139 2-214820

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

5

Where are we going to get 100 or 200 bit integers?

▪ SIMD units are close approximations
▪ Central concept: treat vector of 64-bit values as one long integer
▪ ARM NEON is 128 bits
▪ ARM SVE (just announced) 128 to 2048 bits

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

6

High-Precision Anchored (HPA) Numbers

▪ An HPA number comprises:
▪ a long 2’s-complement integer, containing 100-200 (or more) bits
▪ an anchor that says how to interpret those bits

▪ a programmer picks the range for the application area or problem
▪ anchor is analogous to a floating-point exponent, but is fixed for a given problem
▪ anchor represents the least significant exponent value we are interested in
▪ the length of the long integer then gives us a range over which we can accumulate exactly

▪ HPA accumulation is associative, reproducible, and parallelizable

lane
convert

Vm[3]

F

Vm[2] Vm[1] Vm[0]

lane
convert

lane
convert

lane
convert

256-bit integer

sum

Vi

(Vi,Vm) + F

cincout

CONFIDENTIAL

Adding, Subtracting, Converting FP to HPF

ADD_HPA_FP (Vi, Vm, F)
SUB_HPA_FP (Vi, Vm, F)
CVT_HPA_FP (Vi, Vm, F)

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

8

FP Accumulation

▪ FP2HPA convert & add is a 2-cycle latency, fully pipelined operation on CPUs
▪ add n (or 2n) items in n+1 cycles, vs. adding n items in 3n cycles for A72 Neon
▪ establishing exponent range is the only additional task for a programmer
▪ these adds are associative, so no dependencies ∴fully parallelizable

1 2 3 4 5

ADD_HPA_FP (Vi,Vm,F1) Convert Add

ADD_HPA_FP (Vi,Vm,F2) C A

ADD_HPA_FP (Vi,Vm,F3) C A

ADD_HPA_FP (Vi,Vm,F4) C A

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

9

Sum of FP products

▪ given HPA number (Vi, Vm) and FP numbers F1 and F2
▪ MUL_HPA_FP (Vi, Vm, F1, F2): store F1*F2 as an HPA number
▪ compute F1 * F2 without rounding
▪ each lane gets a copy of the unrounded product (or computes the product) and Vm
▪ A product will span more lanes than an FP64 number

▪ unrounded product converted to HPA using same technique as for FP numbers
▪ fully pipelined

▪ MAC_HPA_FP (Vi, Vm, F1, F2): add F1*F2 to an HPA number

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

10

What If the Anchor Range is Wrong?

▪ on the low end, some numbers may convert as zeros or lose accuracy
▪ this could be a deliberate choice to avoid insignificant data
▪ addition is still associative, parallelizable, and reproducible in this case

▪ on the high end, conversion will signal overflow
▪ this is a problem that needs to be fixed
▪ set an ovf flag? trap?
▪ ... OR scan input set for maximum value

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

11

Simple Programming Model

▪ need to pick an expected exponent range (or scan data set for max. value)
▪ set up exponent base value(s) covering that range
▪ software library could make it even simpler

▪ convenience of FP without the problems of FP
▪ suitable for NEON or SVE

▪ no need to restrict numbers to FP accuracy
▪ e.g., ≥128-bit accurate π could be useful in range reduction

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

12

Paradigm Shift?

▪ “the fast drives out the slow even if the fast is wrong.” - W. Kahan
▪ but what if the fast is right?

▪ why deal with the irreproducibility & incorrectness of FP accumulation?
▪ FP accumulation that is reproducible, parallelizable, faster, and correct

▪ Is this approach useful?

ARITH-24	
Imperial	College,	LONDON	

24-26	July	2017	

Submission	deadline:	31	December	2016	

	www.arith24.arithsymposium.org

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

14

Extra 1: why are we using double precision?

▪ Single precision: around 10-38 to 1038
▪ Do measurements have more than 24 significant bits of accuracy?
▪ My guess: we use DP because of associativity problems
▪ HPA would allow us to use SP:
▪ double memory bandwidth
▪ double computation bandwidth
▪ half the power per flop
▪ exact, reproducible sums and sums of products

CONFIDENTIAL

Extra 2: multi-lane addition/subtraction

§ Possible, but not ideal for SIMD paradigm
§ Requires cross-lane carries

!

a1[63:0] b1[63:0]

sub

s0[63:0],,

+

a0[63:0]
b0[63:0]

+

s1[63:0]

+
0,

!

1,

a2[63:0] b2[63:0]

+

s2[63:0]

+
0,

!

1,

a3[63:0] b3[63:0]

+

s3[63:0]

+
0,

!

1,

g0

!!!! !!!!!
! !!!!

!!!! !!!

!!!! !!!
p1

p2
g2

g1

G1:0 G2:0

G3:2

g3 ,,p3

G3:0

!!

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

16

Redundant Long Integer Arithmetic

▪ Allow vector elements to “overlap”
▪ For example, allowing 8 bits’ overlap between lanes:

▪ Provide headroom in each lane to accommodate carries
▪ Treat each lane as a 2’s-complement number

Accum[255:192] Accum[191:128] Accum[127:64] Accum[63:0]

Accum[119:56]

Accum[175:112]

Accum[231:168]

overlaps are 8-b
carry-save numbers

© ARM 2016

Title 40pt sentence case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

17

Redundant Long Integer Arithmetic

▪ Can complete 28 – 1 = 255 additions/subtractions without carries needing to
transfer between lanes

▪ Periodically, need to “reset” carries
▪ Set to all 0’s by sequential addition of overlap bits from lower lane to next

higher lane
▪ Full-width 2’s-complement number

▪ Alternative parallel technique restricts overlap values to {+1, 0, -1}

Acc[55:0]

Acc[167:112]

Acc[231:168]

+ 0

+ 0

+ 0

Acc[111:56]

Accum[63:0]

Accum[175:112]

Accum[231:168]

Accum[119:56]

